
5/25/2022

1

Exception Handling
and

Text IO

By: Mamoun Nawahdah (Ph.D.)

2022

2

Runtime Error?

5/25/2022

2

3

Fix it Using an if Statement

4

Exception Handling

 Exception handling technique enables a

method to throw an exception to its caller.

 Without this capability, a method must
handle the exception or terminate the
program.

5/25/2022

3

5

Exception Types

6

System Errors

System errors are thrown by JVM and represented in the
Error class. The Error class describes internal system errors.

5/25/2022

4

7

Exceptions

 Exception describes errors caused by your program and
external circumstances.

 These errors can be caught and handled by your program.

8

Runtime Exceptions

 RuntimeException is caused by programming errors,
such as bad casting, accessing an out-of-bounds array, and
numeric errors.

5/25/2022

5

9

Checked Exceptions vs.
Unchecked Exceptions

 RuntimeException, Error and their

subclasses are known as unchecked
exceptions.

 All other exceptions are known as checked
exceptions, meaning that the compiler forces
the programmer to check and deal with the
exceptions.

10

Unchecked Exceptions
 In most cases, unchecked exceptions reflect programming
logic errors that are not recoverable.

 For example:

 a NullPointerException is thrown if you access an
object through a reference variable before an object is
assigned to it.

 an IndexOutOfBoundsException is thrown if you access
an element in an array outside the bounds of the array.

 These are the logic errors that should be corrected in the
program.

5/25/2022

6

11

Declaring, Throwing, and
Catching Exceptions

12

Declaring Exceptions

 Every method must state the types of
checked exceptions it might throw.

 This is known as declaring exceptions.

public void x() throws IOException

public void y() throws IOException, OtherException

5/25/2022

7

13

Throwing Exceptions
 When the program detects an error, the
program can create an instance of an appropriate
exception type and throw it.

 This is known as throwing an exception.

throw new TheException();

TheException ex = new TheException();
throw ex;

14

Throwing Exceptions Example

public void setRadius(double newRadius)
throws IllegalArgumentException {

if (newRadius >= 0)
radius = newRadius;

else
throw new IllegalArgumentException(

"Radius cannot be negative");
}

5/25/2022

8

15

Catching Exceptions
try {

statements; // Statements that may throw exceptions

}
catch (Exception1 exVar1) {

handler for exception1;
}
catch (Exception2 exVar2) {

handler for exception2;
}
...
catch (ExceptionN exVar3) {

handler for exceptionN;
}

Catch or Declare Checked Exceptions

Suppose p2 is defined as follow:

void p2() throws IOException {
 if (a file does not exist) {
 throw new IOException("File does not exist");
 }

 ...
}

5/25/2022

9

17

Catch or Declare Checked Exceptions

 Java forces you to deal with checked exceptions.

 You must invoke it in a try-catch block or

 declare to throw the exception in the calling method.

 For example, suppose that method p1 invokes method
p2, you have to write the code as follow:

5/25/2022

10

5/25/2022

11

21

Rethrowing Exceptions

try {
statements;

}
catch(TheException ex) {

perform operations before exits;

throw ex;
}

22

When to Throw Exceptions
 An exception occurs in a method.

 If you want the exception to be processed by
its caller, you should create an exception object
and throw it.

 If you can handle the exception in the method
where it occurs, there is no need to throw it.

When to Use Exceptions
 You should use it to deal with unexpected
error conditions.

5/25/2022

12

23

Caution!
 Do not use exception to deal with simple,
expected situations.
 For example, the following code:

try {
System.out.println(refVar.toString());

}
catch (NullPointerException ex) {

System.out.println("refVar is null");
}

 is better to be replaced by:
if (refVar != null)

System.out.println(refVar.toString());
else

System.out.println("refVar is null");

24

The File Class

 The File class is intended to provide
an abstraction that deals with most of
the machine-dependent complexities
of files and path names in a machine-
independent fashion.

 The filename is a string.

 The File class is a wrapper class for
the file name and its directory path.

5/25/2022

13

25

File class

26

File class

5/25/2022

14

27

Text I/O
 A File object encapsulates the properties of a file or a

path, but does not contain the methods for

reading/writing data from/to a file.

 In order to perform I/O, you need to create objects

using appropriate Java I/O classes.

 The objects contain the methods for reading/writing

data from/to a file.

 This section introduces how to read/write strings and

numeric values from/to a text file using the Scanner

and PrintWriter classes.

28

PrintWriter class

5/25/2022

15

29

Scanner class

30

Problem: Replacing Text

 Write a class named ReplaceText that
replaces a string in a text file with a
new string. The filename and strings
are passed as command-line
arguments as follows:

 java ReplaceText sourceFile
targetFile oldString newString

